Diamond as Functional Material for Bioelectronics and Biotechnology
نویسندگان
چکیده
Understanding the interaction between the biological environment (tissues, cells, proteins, electrolytes, etc.) and a solid surface is crucial for biomedical applications such as bio-sensors, bio-electronics, tissue engineering and the optimization of implant materials. Cells, the cornerstones of living tissue, perceive their surroundings and subsequently modify it by producing extracellular matrix (ECM), which serves as a basis to simplify their adhesion, spreading and differentiation (Shakenraad & Busscher, 1989). This process is considerably complex, flexible and strongly depends on the cell cultivation conditions including the type of the substrate. Surface roughness of the substrate plays an important role (Babchenko et al., 2009; Kalbacova et al., 2009; Kromka et al., 2009; Zhao et al., 2006), other influential factors include both the porosity (Tanaka et al., 2007) and the wettability of the substrate, the latter influencing protein conformation (Browne et al., 2004; Rezek, Ukraintsev, Michalíková, Kromka, Zemek & Kalbacova, 2009) as well as the adsorption and viability of cells (Grausova et al., 2009; Kalbacova, Kalbac, Dunsch, Kromka, Vanecek, Rezek, Hempel & Kmoch, 2007). Materials which are commonly employed as substrates for in vitro testing are polystyrene and glass. In this context, diamond as a technological material can provide a relatively unique combination of excellent semiconducting, mechanical, chemical as well as biological properties (Nebel et al., 2007). Diamond also meets the basic requirements for large-scale industrial application, most notably, it can be prepared synthetically. Diamond can be synthesized either as a bulk material under high-pressure and high-temperature conditions, or in the form of thin films by chemical vapor deposition of methane and hydrogen on various substrates including glass and metal (Kromka et al., 2008; Potocky et al., 2007). Moreover, the application of selective nucleation makes it possible to directly grow conductive diamond microstructures, which operate e.g. as transistors or pH sensors (Kozak et al., 2010). Nowadays, it is possible to deposit diamond even on large areas (600 cm2 or more) using linear antennas (Kromka et al., 2011; Tsugawa et al., 2010). The excellent compatibility of diamond with biological materials and environment (Bajaj et al., 2007; Grausova et al., 2009; Diamond as Functional Material for Bioelectronics and Biotechnology
منابع مشابه
Nano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications
Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...
متن کاملNano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications
Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...
متن کاملEffects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein.
Diamond is a promising material for merging solid-state and biological systems owing to its chemical stability, low background current, wide potential window and biocompatibility. The effects of surface charge density on human immunodeficiency virus type 1 Trans-activator transcription (HIV-1 Tat) protein binding have been investigated on a diamond field-effect transistor (FET) using ribonuclei...
متن کاملA diamond-based biosensor for the recording of neuronal activity.
We have developed a device for recording the extracellular electrical activity of cultured neuronal networks based on a hydrogen terminated (H-terminated) conductive diamond. GT1-7 cells, a neuronal cell line showing spontaneous action potentials firing, could maintain their functional properties for days in culture when plated on the H-terminated diamond surface. The recorded extracellular ele...
متن کامل1 Implantable Bioelectronics – Editorial Introduction
The integration of electronic elements with biological systems, resulting in novel devices with unusual functionalities, attracts significant research efforts owing to fundamental scientific interest and the possible practical applications of such devices. The commonly used buzzword ‘‘bioelectronics’’ highlights the functional integration of two different areas of science and engineering – biol...
متن کامل